Monday, 23 September 2019

spark_mllib_examples

----------------------------------------------
hadoop fs -put $SPARK_HOME/data data


Basic Statistics:
--------------------------

$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.MultivariateSummarizer --input $SPARK_HOME/data/mllib/sample_linear_regression_data.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.Correlations --input $SPARK_HOME/data/mllib/sample_linear_regression_data.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.RandomRDDGeneration


Classification and regression:
--------------------------
---------------------------------------------------------------------------
Problem Type ==> Supported Methods
---------------------------------------------------------------------------
Binary Classification ==> linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes

Multiclass Classification ==> logistic regression, decision trees, random forests, naive Bayes

Regression ==> linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees, isotonic regression
---------------------------------------------------------------------------

linear SVMs:- $SPARK_HOME/bin/run-example mllib.BinaryClassificationMetricsExample

logistic regression:- $SPARK_HOME/bin/run-example mllib.MulticlassMetricsExample

naive Bayes:-  $SPARK_HOME/bin/run-example mllib.NaiveBayesExample

decision trees:-  $SPARK_HOME/bin/run-example mllib.DecisionTreeRegressionExample
decision trees:-  $SPARK_HOME/bin/run-example mllib.DecisionTreeClassificationExample

random forests:-  $SPARK_HOME/bin/run-example mllib.RandomForestClassificationExample
random forests:-  $SPARK_HOME/bin/run-example mllib.RandomForestRegressionExample

gradient-boosted trees:-  $SPARK_HOME/bin/run-example mllib.GradientBoostingRegressionExample
gradient-boosted trees:-  $SPARK_HOME/bin/run-example mllib.GradientBoostingClassificationExample

isotonic regression:-  $SPARK_HOME/bin/run-example mllib.IsotonicRegressionExample


$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.BinaryClassification $SPARK_HOME/data/mllib/sample_binary_classification_data.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.LinearRegression $SPARK_HOME/data/mllib/sample_linear_regression_data.txt



Collaborative filtering:
--------------------------

$SPARK_HOME/bin/run-example mllib.RecommendationExample


Clustering:
--------------------------
kmeans:- $SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.DenseKMeans $SPARK_HOME/data/mllib/kmeans_data.txt --k 3 --numIterations 5

Gaussian mixture:- $SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.DenseGaussianMixture $SPARK_HOME/data/mllib/kmeans_data.txt 3 5

power iteration clustering (PIC):- $SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.PowerIterationClusteringExample

latent Dirichlet allocation (LDA):- $SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.LDAExample $SPARK_HOME/data/mllib/sample_lda_data.txt


streaming k-means:- $SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.StreamingKMeansExample

bisecting k-means:-

---------------------------------------------------------

$SPARK_HOME/bin/run-example mllib.CosineSimilarity --threshold 0.1 $SPARK_HOME/data/mllib/sample_svm_data.txt


$SPARK_HOME/bin/run-example mllib.FPGrowthExample --minSupport 0.8 --numPartition 2 $SPARK_HOME/data/mllib/sample_fpgrowth.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.MovieLensALS $SPARK_HOME/data/mllib/sample_movielens_data.txt



$SPARK_HOME/bin/run-example org.apache.spark.examples.mllib.SampledRDDs --input $SPARK_HOME/data/mllib/sample_linear_regression_data.txt


$SPARK_HOME/bin/run-example mllib.StreamingTestExample file:/home/orienit/spark/input/test


----------------------------------------------

$SPARK_HOME/bin/run-example ml.CrossValidatorExample


$SPARK_HOME/bin/run-example org.apache.spark.examples.ml.DataFrameExample --input $SPARK_HOME/data/mllib/sample_libsvm_data.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.ml.KMeansExample $SPARK_HOME/data/mllib/kmeans_data.txt 3


$SPARK_HOME/bin/run-example org.apache.spark.examples.ml.LinearRegressionExample --regParam 0.15 --elasticNetParam 1.0 $SPARK_HOME/data/mllib/sample_linear_regression_data.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.ml.LogisticRegressionExample --regParam 0.3 --elasticNetParam 0.8 $SPARK_HOME/data/mllib/sample_libsvm_data.txt


$SPARK_HOME/bin/run-example org.apache.spark.examples.ml.MovieLensALS --rank 10 --maxIter 15 --regParam 0.1 --movies $SPARK_HOME/data/mllib/als/sample_movielens_movies.txt --ratings $SPARK_HOME/data/mllib/als/sample_movielens_ratings.txt



Estimator, Transformer, and Param
----------------------------------------------

$SPARK_HOME/bin/run-example org.apache.spark.examples.ml.SimpleParamsExample


model selection via train validation split
----------------------------------------------
$SPARK_HOME/bin/run-example org.apache.spark.examples.mlTrainValidationSplitExample



----------------------------------------------

cd /home/orienit/spark/machine_learning_examples/ml-100k

val rawData = sc.textFile("file:/home/orienit/spark/input/ml-100k/u.data")
rawData.first()


val rawRatings = rawData.map(_.split("\t").take(3))
rawRatings.first()


import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating

val ratings = rawRatings.map { case Array(user, movie, rating) => Rating(user.toInt, movie.toInt, rating.toDouble) }
ratings.first()

val model = ALS.train(ratings, 50, 10, 0.01)

model.userFeatures

model.userFeatures.count

model.productFeatures.count


val predictedRating = model.predict(789, 123)

val userId = 789
val K = 10
val topKRecs = model.recommendProducts(userId, K)
println(topKRecs.mkString("\n"))

----------------------------------------------

val movies = sc.textFile("file:/home/orienit/spark/input/ml-100k/u.item")
val titles = movies.map(line => line.split("\\|").take(2)).map(array => (array(0).toInt, array(1))).collectAsMap()
titles(123)


val moviesForUser = ratings.keyBy(_.user).lookup(789)







1 comment:

spark_streaming_examples

Create Spark Streaming Context: ========================================== scala: --------------- import org.apache.spark._ import ...